AP068
FPGA Based Sensor Hub For VR|AR Application

Universiti Tunku Abdul Rahman
Advisors: Dr. Khaw Mei Kum, Dr. Lo Fook Loong

Chong Kwang Liang,
Lim Jia Zhi,
Yong Kah Men
Outline

● Motivation
● Introduction
● Features
 1. Head Position Tracking
 2. Eye Tracking
 3. Stereo Vision
● Implementation
● Application
Motivation

● New way to deliver content and experience
● Demand for affordability and portability
● Exponential growth of the industry
● Basic requirements for VR/AR
 ○ Head tracking
 ○ Stereoscopic displays
● Advance requirements
 ○ Eye tracking
 ○ Depth map
Introduction

- FPGA based sensor hub
- 3 main functions
 - Head Position Tracking
 - Stereo Vision
 - Eye Tracking

Initial Measurement Unit (IMU)

Input: Raw acceleration and angular velocity data

Process: Kalman Filter

Result: Head Position Tracking

DE10-Nano

USB

Input: 2D videos

Process: Stereo Vision

Result: Depth Map

Dual Camera

Process: Stereo Vision

Result: Eye Tracking
Features - Head Position Tracking

- Track the direction where user’s head is facing

- Vital data for VR/AR application
- Render specific portion of display based on head position
- Require extra low latency
 - Prevent dizziness
 - Better immersion
Features - Stereo Vision

- Process dual camera images into 3D depth map

- Inside-out tracking
 - Positional tracking based on environment
 - Minimal setup and boundless field

- Realistic augmented/mixed reality
 - Environment aware application
Features - Eye Tracking

- Determine eye position from video stream

- Foveated Rendering
 - Render only portion of the display based on the eye position data.

- Input Interface Device
 - Interaction and control by using eye movement
Head Position Tracking

- Kalman Filtering Algorithm
- Two stages
 - Time prediction
 - Measurement update
- Heavy computation
 - Large block of inputs
 - Complex matrix computation
- FPGA
 - Parallel computation ability
 - Computing resource available
 - Able to configured by end user when necessary
Stereo Vision

● Calibrate and rectify images
 ○ remove distortion
● Grey-scale conversion
● Stereo Matching
 ○ Sum of Absolute Difference (SAD) for cost aggregation
 ○ winner-take-all (WTA) for disparity selection
● Disparity Calculation
 ○ calculate depth from disparity
Eye Tracking

- Using Image Processing Approaches

- Face and Eye Detection
 - Classifier using Viola-Jones Algorithm

- Eye Centre Localisation
 - Image Gradient based
System Architecture

- Uses both FPGA and HPS
 - FPGA
 - Head Position Tracking
 - Stereo Vision
 - HPS
 - Eye Tracking
Applications

- Lightweight, low power sensor hub
 - Integrated with head mounted display

- Provide API to facilitate reading of data from the sensor hub

- Provide hardware abstraction layer
 - Simplify application development for makers and developers
Thank You