

AP068 FPGA Based Sensor Hub For VR|AR Application

Universiti Tunku Abdul Rahman Advisors: Dr. Khaw Mei Kum, Dr. Lo Fook Loong

> Chong Kwang Liang, Lim Jia Zhi, Yong Kah Men

Headline Sponsor

Organizer

University Progam Sponsor

Sponsors

Distribution Partner

University Progam Sponsor

AP068 Outline

- Motivation
- Introduction
- Features
 - 1. Head Position Tracking
 - 2. Eye Tracking
 - 3. Stereo Vision
- Implementation
- Application

AP068 Motivation

- New way to deliver content and experience
- Demand for affordability and portability
- Exponential growth of the industry
- Basic requirements for VR/AR
 - Head tracking
 - Stereoscopic displays
- Advance requirements
 - Eye tracking
 - Depth map

AP068

Introduction

- FPGA based sensor hub
- 3 main functions
 - \circ Head Position Tracking
 - \circ Stereo Vision
 - Eye Tracking

AP068 Features - Head Position Tracking

• Track the direction where user's head is facing

- Vital data for VR/AR application
- Render specific portion of display based on head position
- Require extra low latency
 - Prevent dizziness
 - Better immersion

AP068 Features - Stereo Vision

Process dual camera images into 3D depth map

• Inside-out tracking

- Positional tracking based on environment
- Minimal setup and boundless field
- Realistic augmented/mixed reality
 - Environment aware application

AP068 Features - Eye Tracking

• Determine eye position from video stream

• Foveated Rendering

- Render only portion of the display based on the eye position data.
- Input Interface Device
 - Interaction and control by using eye movement

AP068 Head Position Tracking

- Kalman Filtering Algorithm
- Two stages
 - Time prediction
 - Measurement update
- Heavy computation
 - Large block of inputs
 - Complex matrix computation
- FPGA
 - Parallel computation ability
 - Computing resource available
 - Able to configured by end user when necessary

AP068 Stereo Vision

- Calibrate and rectify images
 - remove distortion
- Grey-scale conversion
- Stereo Matching
 - Sum of Absolute Difference (SAD) for cost aggregation
 - winner-take-all (WTA) for disparity selection
- Disparity Calculation
 - \circ calculate depth from disparity

AP068 Eye Tracking

• Using Image Processing Approaches

- Face and Eye Detection
 - Classifier using Viola-Jones Algorithm
- Eye Centre Localisation
 - Image Gradient based

AP068 System Architecture

• Uses both FPGA and HPS

• FPGA

- Head Position Tracking
- Stereo Vision

• HPS

• Eye Tracking

AP068 Applications

- Lightweight, low power sensor hub
 - Integrated with head mounted display
- Provide API to facilitate reading of data from the sensor hub
- Provide hardware abstraction layer
 - Simplify application development for makers and developers

Thank You

Headline Sponsor

Organizer

University Progam Sponsor

Sponsors

Distribution Partner

University Progam Sponsor