AP085 - Embedded Neural Coprocessor

Ratnasegar Natheesan | Kamalakkannan Kamalavasan | Kathirgamaraja Pradeep Supervisor - Dr. Ajith Pasqul

Introduction

Convolution Neural Network(ConvNet)

- Popularity of ConvNets in computer vision
- Large size computation bounded, memory bounded

• Small ConvNet - SqueezeNet

- Small convolution kernel
- Removed Fully connected layer

ConvNet in Embedded System

- Novel Architecture for SoC FPGA
- SqueezeNet like architecture

Applications

- Computer vision tasks classification, detection, segmentation
 - Autonomous vehicle
 - Drones
 - Robots
 - Face recognition
 - Surveillance camera
- Signal processing
 - Voice command recognition
 - Sensor data processing

CAT, DOG, DUCK

Segmentation

CAT, DOG, DUCK

Design Strategies

- Resource Constraints
 - 16 bit float number
 - Fixed point operation
 - Blockwise execution Computation blocks
- Memory access constrain
 - Intermediate output stored in block ram
 - Low memory access for computation block

Overall Architecture

Key Features of Architecture

- Compact size
- Scalable and Extendable Design
- Higher performance
- Cost effective
- Power efficient
- Data privacy
- Low network bandwidth

Functional Flow

• External PC

- Training model
- Converting parameters to custom representation
- Storing parameters in HPS system

HPS system

- Loading parameters in memory
- Generate configuration
- Configure hardware
- Loading input

• FPGA system

- Running Inference
- Writing output to memory
- Interrupt generation

Implementation SqueezeNet v1.1

• Performance

- Runtime : 9 FPS @ 100MHz
- Power : 2W
- Memory Bandwidth: 142 MB/s

Resource Utilization

- Logics : 14K
- Registers : 19K
- DSP : 56 Blocks
- Block RAM : 1.3 MBit

Implementation SqueezeNet v1.1

Comparison

Design	Performance	Power	Feature
Our Design	9 FPS	2W	100MHz clock
Raspberry Pi 3 (Caffe)	3-5 FPS	3.5W	~1GHz, VideoCore IV GPU(1GB LPDDR2 @900MHz)
GTX 1080 Ti (Caffe)	~100 FPS	280W	11.3 TFLOPS
Mobile: Snapdragon 820 (without GPU)	~13 FPS	N/A	Quad core ~ (2x 2.15GHz and 2 x 1.67GHz)
Mobile: Snapdragon 820 (with GPU)	~21 FPS	2.5W	Quad core ~ (2x 2.15GHz and 2 x 1.67GHz)