



<u>Mirko Mariotti,</u> Loriano Storchi, Daniele Spiga

Dept of Physics and Geology – University of Perugia INFN Perugia



Headline Sponsor



Organizer



University Progam Sponsor



Sponsors





**Distribution Partner** 

University Progam Sponsor



## BondMachine (BM)

#### EM083

### Objectives

- Create a computational system where hardware and software are co-designed
- Guarantee the full exploitation of the FPGA hardware capabilities
- Provide a user friendly abstraction
- A dynamic computer architecture: adapting to specific computational problems

Strategy



# **BM Computer Architecture Components**

#### EM083

### **Connecting Processor (CP)**

The atomic computing core

- Simple "register machines"
- Interconnected via special IO registers and opcodes
- Local ROM and RAM
- Specialized with many customization possibilities
- Building a Heterogeneous architecture with Many cores in a single BM

### Shared Object (SO)

#### **Non-computing objects**

- Objects like: memories, channels, barriers, pseudo random generators. Etc..
- Shared possibly among CPs
- Used by CPs via extra instructions to allow synchronization, storage, communication





# Handling the BM computer architecture

#### EM083

The BM computer architecture is managed by a set of tools to:

- Build a specific architecture
- Modify a pre-existing architecture
- Simulate or Emulate the behavior
- Generate the Register Transfer Level (RTL) code

## Simulation Framework (simbox)

## Simulates the behavior, emulates a BM on a standard Linux workstation.



### Processor Builder (procbuilder)

Selects the single processor, assemble and disassemble, saves on disk as JSON, creates the RTL code of a CP. BondMachine Builder (bondmachine)

Connects CPs and SOs together in custom topologies, loads and saves on disk as JSON, create BM's RTL code.

#### Bondgo: The BM compiler InnovateFPGA 2018 **Grand Final** High level GO source file EM083 Architecture creation Compilation Assembly CP 0 CP 1 CP 0 Interconnections Assembling and Binaries CP 2 СР ... Assembly CP ... CP 3 CP N-th Assembly CP N-th BondMachine BM computer architecture Handling tools Ch.\Regulars can be all weak cannected tain film parts FPGA

The Bondgo compiler

specific

Network Connector



## **Ecosystem API**

Connector

EM083

### Mapping specific computational problems to BondMachines





| - 11/1/11/2-54 |      |  |
|----------------|------|--|
|                | L VI |  |
|                | 17   |  |

## Clustering BondMachines

- The same logic existing among CPs have been extended to different BMs organized in clusters.
- Custom protocols have been created for this purpose.
- FPGA based BMs, standard Linux Workstations and emulated BMs may join a cluster and contribute to a single distributed computational problem.





# Conclusion and Future work

EM083

- The result of this project is the construction of a computer architecture that is not anymore a static constraint where computing occurs but its creation becomes a part of the computing process, gaining computing power and flexibility
- Over this abstraction is it possible to create a full computing Ecosystem
- Keeping the register machine abstraction it is possible to borrow well known languages and techniques to keep the programming simple

Future work:

- New instructions and SO
- Support for new interconnection devices

Uses in Physics experiments:

- Real time pulse shape analysis in neutron detectors
- Space experiments test beams