
PipeCNN: An OpenCL-Based FPGA Accelerator for
Convolution Neural Network

Jianjing An

Email: {wangdong, 16112065, 16125141}@bjtu.edu.cn

Student : Jianjing An and Diankun Jiang

Teacher : Dong Wang

Team Num: PR022

Institute of Information Science Beijing Jiaotong University

• PipeCNN

PipeCNN is an OpenCL-based FPGA Accelerator for Large-Scale Convolutional Neural

Networks (CNNs). There is a growing trend among the FPGA community to utilize High

Level Synthesis (HLS) tools to design and implement customized circuits on FPGAs.

• Key Features

• A completed OpenCL kernel sets for CNN forward computations

• A generic design, efficient and scalable in performance and cost

• Optimization Design

•8-bit fixed-point Design

•Mixed window/line-buffer caching scheme

• Top-Level Architecture

• CNN running on deeply pipelined kernels using Channel/Pipe in OpenCL

• Use a single hardware kernel to implement both the convolution and FC layers

Conv. PoolingMemRD

Channel/PipesNDRange Kernel Single-threaded
Kernel

Deeply Pipelined OpenCL Kernels

MemWR LRN

Global Memory

Fig1. The top-level architecture of PipeCNN.

Input Featuremaps

Weights

D0

D1

D128
W0

K

K

×

DMA-friendly
Addressing

Streamed
Processing

Fig 2. Transform 3D Conv. into 1D accumulation

Fig 3. OpenCL-Modeled Accumulation Circuit

CU

 ×

+

× ×

+

×

+

+

+

Vectorized
Weights

Vectorized
Features

Pipelined Multipler-
Adder Tree

+

Delayed Buffer

Vectorized Input

CU

Output Buffer

Input Connection

CU
CU

▶ Convolution:

 0 0

0 0 0

f , , , , , , ,
l

i y x

C

o i y x i i y x

f k

K K

l

k

y x W f f k k D f y k x kD

　

　

▶ Inner-product:

 0 0

0

,
i

lC

o i i i

f

lD f W f f D f

▶ Unified formula:

 0 0

0 0

f , , , , , (N =K or 1)
i

lC

o i i i

f

l

n

N

y x W f f n D f n KD

 　

M

VEC_SIZE

C

K

K

3-D Convolution
(Local Work-Group) MemRD Kernel NDRange MemWR Kernel NDRange

CU_NUM

x

y
z

(W-K)/S+1

[(W-K)/S+1]× K

Vectorized
Output

C× M

Vectorized
Input

Fig 4. Data vectorization and reuse in the NDRange

• Improving Throughput and Minimizing BW requirements

• Vectorizing feature map and weight

• Utilizing on-chip cache and reusing data in multiple CUs

• Current Status

• A kernel set supporting state-of-the-art CNN

− Convolution/FC/pooling/LRN/BN/Relu/Sigmoid/Softmax

− AlexNet/VGG/NIN/SqueezNet/GoogleNet/ResNet verified

• Tested on main stream FPGA boards

− Arria-10 (high-end), Stratix-V, Cyclone-V(low-cost)

Fig 5. Imagenet Classification on Alexnet

Accuracy Top-1 Top-5

Full precision(32 bit) 56.8% 79.8%

This work(8 bit) 56.2% 79.5%

Table1 The comparison of AlexNet model classification accuracy

Accuracy: Table1
Speed: 110ms on
DE10-NANO platform

Fig 6. Object recognition via camera on Alexnet

Datasets: LFW

Fig 7. Face recognition on Vgg16

Fig 8. Object Detection based on Faster R-CNN(Alexnet)

Full precision mAP: 56.2
8-bit mAP: 54.5

Fig. 9 Design space exploration for AlexNet model on Stratix-V A7 FPGA board. CU
denotes compute units, and VEC_SIZE represents the degree of data parallelism utilized.
(a) Logic elements utilization; (b) DSP blocks utilization; (c) Inference time.

Highest
Throughp

ut

Optimal
Resource

Utilization

Fig .10 Resource utilization of each kernel for AlexNet model

Table. 2 Summary of the measured performance and power consumption on different platforms

* Oskouei S S, Golestani H B, Hashemi M. CNNdroid: GPU-Accelerated Execution of Trained Deep Convolutional Neural

Networks on Android, ACM Conference on Multimedia 2016.

Platform Frequency
Inference

Time b

Effective
Power c

System
Power d

ARM Cortex a

A57/A53 CPU
1.9 Ghz (A57)
1.3 Ghz (A53)

20,767 ms 2.4 W 4.1 W

Mali-T760
GPU

700 Mhz 482 ms 0.52 W 2.3 W

Cyclone A5
SoC-FPGA

800 Mhz (CPU)
140 Mhz (FPGA)

110 ms 0.5 W 2.1 W

a Samsung Galaxy Note 4 (Exynos 5433)
b AlexNet benchmark was used.
c Effective power = total power - standby power
d Measured by using external power meter with screen turned off

• Comparison with HLS/OpenCL-based designs

FPGA2015 FPGA2016 FPGA2017 Our Work

Device
Virtex-7

VX485T(28nm)
Stratix-V

GXA7(28nm)
Arria-10

AX1150(20nm)
Stratix-V

GXA7(28nm)

FPGA
Capacity

485K LUTs
2,800 DSPs

622K LEs
256 DSPs

1,150K LEs
2,800 DSPs

622K LEs
256 DSPs

Frequency 100MHz 120MHz 303MHz 200MHz

Precision Float(32b) fixed(8b-16b) float(16b) Fixed(8b)

Inference Time a 21.6 msb 45.7 ms 0.98 ms 10.5 ms

Throughput 61.6 GOPSb 31.8 GOPS 1,382 GOPS 133.2 GOPS

DSP Consumed 2,240 246 1,476 247

Perf. Density
(GOPS/DSP/GHz/W)

0.015 0.042 0.068 0.103

Power 18.6 W 25.8 W 45 W 26.2 W
a alexNet model is used.
b Convolution operation only.

4 × Improvement

1.5x

Table. 2 Summary of the measured performance and power consumption on different platforms

Fig. 11 open-source PipeCNN github

https://github.com/doonny/PipeCNN

PipeCNN

Thanks ~

Backgrounds

• The Advantages of OpenCL

• Cross Vendor/Architecture/Device Support

− Xilinx, Altera, Intel, AMD, Nvidia, ARM, TI

− FPGA, CPU, GPU, DSP, Many-Core

• High-Level Programming Language/Interface

− C, C++, Python, Java

• Fast Design, Verification, Test

− From months to hours

• Ecosystem

− clBlas, clFFT, clSPARSE, TensorFlow, Caffe

• Integrated with RTL-based Flow for FPGA

− Wrap RTL modules as kernel functions

